ε-NFAs

See Section 2.5 of the text.

Here is another finite automaton -- an ε-NFA, or an NFA with ε transitions". These allow transitions labeled " ε " to be followed without consuming any input. These aren't interesting in themselves but are useful for showing that DFAs and regular expressions describe the same languages.

Example: Here is an e-NFA that accepts strings with 20 's or 2 1's:

Formally, an ε-NFA is ($\mathrm{Q}, \Sigma, \delta, \mathrm{s}, \mathrm{F}$) where $\mathrm{Q}, \Sigma, \mathrm{s}$, and F are defined as with other NFAs and the inputs to δ are a state and either a letter in Σ or ε. This processes strings in the same way as the NFA $\left(\Sigma, \mathrm{Q}, \delta^{\prime}, \mathrm{s}, \mathrm{F}\right)$, where $\delta^{\prime}(\mathrm{q}, \mathrm{a})=\delta(\mathrm{q}, \mathrm{a}) \cup \cup_{q^{\prime} \in \delta(q, \varepsilon)} \delta^{\prime}\left(q^{\prime}, a\right)$. (Note that this is a recursive definition of δ^{\prime}.)

We are going to show that the language accepted by an ε-NFA is regular (so every ε-NFA has an equivalent DFA). To get there we need the idea of an ε-closure of a set of states. Let $(\mathrm{Q}, \Sigma, \delta, \mathrm{s}, \mathrm{F})$ be the ε NFA we are talking about and let A be an set of states from $\mathrm{Q} . \bar{A}$ will represent the ε-closure of A. Here are two things we want to be true:

- $\mathrm{A} \subset \bar{A}$
- For each q in \bar{A} if there is an ε-transition from q to q_{1} then q_{1} should be in \bar{A}.

This gives us an algorithm: to compute \bar{A} start with A and add the destinations of ε-transitions until nothing else can be added.

Example:

This accepts $1^{*} 0+01^{*}$ Here are some ε-closures:

$$
\begin{array}{ll}
\overline{\{T\}}=\{T, U\} & \overline{\{U\}}=\{U\} \\
\overline{\{S\}}=\{S, T, U\} & \overline{\{S, W\}}=\{S, W, T, U, X\}
\end{array}
$$

Theorem: Any language accepted by an ε-NFA is regular. Construction: Let ($\mathrm{Q}, \Sigma, \delta, \mathrm{s}, \mathrm{F}$) be an ε-NFA. We will construct an equivalent DFA ($\mathrm{Q}^{\prime}, \Sigma, \delta^{\prime}, \mathrm{s}^{\prime}, \mathrm{F}^{\prime}$) :

- Q' consists of subsets of Q
- $\mathrm{s}^{\prime}=\overline{\{s\}}$
- If $\mathrm{P}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \ldots \mathrm{q}_{\mathrm{k}}\right\}$ is a state in Q^{\prime} and a is in Σ then $\mathrm{P}^{\prime}=\bigcup_{i=0}^{k} \overline{\delta\left(q_{i}, a\right)}$ is also a state in Q^{\prime} and $\delta^{\prime}(P, a)=P^{\prime}$
- If $P=\left\{q_{0}, q_{1}, \ldots q_{k}\right\}$ is a state in Q^{\prime} and if any of the q_{i} are in F, then P is in F^{\prime}.

Example:

ε-NFA:

Equivalent DFA:

Example:

ε-NFA:

Note that this can be simplified to:

We still need to prove that the DFA of this construction accepts exactly the same strings as the original ε-NFA. The proof is almost exactly the same as the proof that NFAs are equivalent to DFAs. If a string is accepted by the ε-NFA, processing the string takes the automaton through states $q_{0}, q_{1}, \ldots q_{k}$, where q_{k} is final. The q_{i} will be elements of states through which the DFA will pass while processing the string. The DFA will end in a state containing q_{k}, which is final, so it will accept the string.

Alternatively, if a string α takes the DFA to state $\left\{\mathrm{q}_{0}, \ldots \mathrm{q}_{\mathrm{j}}\right\}$ then on input α the ε-NFA could be in any of the q_{i} states. If the string is accepted by the DFA it will also take the ε-NFA to an accept state.

